Differentiation of Human-Induced Pluripotent Stem Cells Into Insulin-Producing Clusters by MicroRNA-7.
نویسندگان
چکیده
OBJECTIVES Diabetes results from inadequate insulin production from pancreatic β-cells. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all diabetic patients. Thus, finding a new source with effective maturation of β-cells is the major goal of many studies. MicroRNAs are a class of small noncoding ribonucleic acid that regulate gene expression through posttranscriptional mechanisms. MicroRNA-7 has high expression level during pancreatic islet development in humans, thereby playing a critical role in pancreatic β-cell function. We study aimed to develop a protocol to differentiate human-induced pluripotent stem cells efficiently into isletlike cell clusters in vitro by using microRNA-7. MATERIALS AND METHODS Human-induced pluripotent stem cell colonies were transfected with hsa-microRNA-7 by using siPORT NeoFX transfection agent. Total ribonucleic acid was extracted 24 and 48 hours after transfection. The expression of transcription factors which were important during pancreases development was also performed. On the third day, the potency of the clusters was assessed in response to high glucose levels. Diphenylthiocarbazone was used to identify the existence of the β-cells. The presence of insulin and Neurogenin-3 proteins was investigated by immunocytochemistry. RESULTS Morphologic changes were observed on the first day after chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The isletlike cell clusters were positive for insulin and Neurogenin-3 proteins in immunocytochemistry. The clusters were stained with Diphenylthiocarbazone and secreted insulin in a glucose challenge test. CONCLUSIONS MicroRNA-7 transcription factor network is important in pancreatic endocrine differentiation. Chemical transfection with microRNA-7 can differentiate human induced pluripotent stem cells into functional isletlike cell clusters in a short time.
منابع مشابه
Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملIn-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کاملP-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2015